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Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme
in the incompressible limit

Kun Xu and Shiu Hong Lui
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

~Received 28 September 1998!

In this paper, a gas-kinetic Bhatnagar-Gross-Krook~BGK! model is constructed for the Rayleigh-Be´nard
thermal convection in the incompressible flow limit, where the flow field and temperature field are described by
two coupled BGK models. Since the collision times in the corresponding BGK models can be different, the
Prandtl number can be changed to any value instead of a fixed Pr51 in the original BGK model@P. L.
Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.94, 511 ~1954!#. The two-dimensional Rayleigh-Be´nard
thermal convection is studied and numerical results are compared with theoretical ones as well as other
simulation results.@S1063-651X~99!00205-6#

PACS number~s!: 47.20.Bp, 05.20.Dd, 02.70.2c
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I. INTRODUCTION

The use of a code for compressible flow to study inco
pressible fluid has attracted much attention in the past. S
compressibility is proportional to the Mach number squar
dr/r;M2, it is negligible once the Mach number is lowe
than 0.15. In many numerical test cases, such as the ca
flow, the results from compressible codes are almost ide
cal to the results from incompressible codes@1–3#. It is also
realized that using a compressible code for incompress
simulations has advantages. For example, a Poisson solv
avoided and parallelization of the code can be easily imp
mented.

If thermal effects are involved in the incompressible flo
a simple adaptation of a compressible code here bears p
tial danger. For example, across the thermal boundary la
the pressure is almost constant. If the temperature cha
substantially, say by 10%, in the layer, then the energy eq
tion will cause a 10% density change due to the ideal eq
tion of statep5rRT. In reality, the density change is min
mal with any reasonable temperature variation in the liqu
So, the compressible effect is more severe in the ther
problem than that for the pure Mach compression prob
wheredr/r;M2. It is certainly true that we can use oth
equations of state to describe a slightly compressible liq
See@4#, and references therein. There, the ability to reco
the correct thermal effects is still questionable. In most c
rent literature about the application of compressible code
incompressible flows, thermal compressibility seems to
ignored.

In order to reduce the compressibility in the compressi
code for the thermal problem, we have to, in some wa
decouple the mass and momentum from the energy equa
In this paper, two pseudotemperatures are used to mode
Rayleigh-Bénard thermal convection problem in the incom
pressible limit. In the current model, the velocity field a
temperature field are described by two Bhatnagar-Gro
Krook ~BGK! models with different collision times. As a
consequence, the Prandtl number can be changed to
value by modifying the collision times.
PRE 601063-651X/99/60~1!/464~7!/$15.00
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II. GAS-KINETIC BGK MODELS
FOR RAYLEIGH-BÉ NARD THERMAL CONVECTION

In this section, we are going to construct BGK models
study the following incompressible Navier-Stokes equatio
with thermal effect:

]r

]t
1“•~rU!50,

]U

]t
1U•“U52

“p

r
1n¹2U2G, ~1!

]T

]t
1“•~TU!5“•~k“T!,

wherer is the density which is a constant in the incompre
ible limit, U the velocity,p the pressure,k the coefficient of
thermal conductivity, andT the temperature. Note thatrT is
the thermal energy. For the Rayleigh-Be´nard convection in a
two-dimensional box, the Boussinesq approximation give

rG5rbG0~T2Tm!ŷ,

whereG0 is the gravitational constant,Tm the average value
of the top and bottom temperatures,ŷ the unit vector in the
vertical direction, andb the coefficient of volume expansion
For authoritative treatments of this problem, see, for
ample,@5,6#.

In order to the recover the above equations, gas-kin
models can be constructed in the following forms:

] f

]t
1u•“ f 5

f eq2 f

tn
1F, ~2!

]h

]t
1u•“h5

heq2h

tc
, ~3!

where u5(u,v) is the x and y components of the particle
velocity. tn andtc are the collision times for the BGK mod
els. Equation~2! is used to recover the mass and moment
equations, and also the velocity flow field. Equation~3! is for
the thermal energy evolution. The equilibrium statesf eq and
heq have the following forms:
464 ©1999 The American Physical Society
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f eq5rS l1

p De2l1~u2U!2
,

heq5rTS l2

p De2l2~u2U!2
,

wherel1 andl2 can be expressed as

l15
1

2RT1
and l25

1

2RT2
,

with the two constant variancesT1 andT2. HereT is the real
temperature to be simulated. Note thatT1 and T2 are both
constants in the current model, and the value of eitherT1 or
l1 determines the artificial sound speed of the flow field.
the above BGK models, the compressibility is determin
from Eq. ~2! with the equation of statep5rRT1, which is
totally decoupled from the real temperatureT. The external
forcing termF in Eq. ~2! can be approximated as@7#

F52l1G•~u2U! f eq,

from which the buoyancy force can be recovered.
In the course of particle collisions, the compatibility co

dition is satisfied in the BGK models,

E ~ f eq2 f !S 1

u

v
D dudv50

and

E ~heq2h!dudv50.

By using the Chapman-Enskog expansion, Eq.~1! can be
recovered exactly in the incompressible limit, with the kin
matic viscosity coefficient

n5tnRT1

and the heat conduction coefficient

k5tcRT2 .

Different from the original BGK model@8#, here both coef-
ficients are decoupled from the fluid temperatureT. As a
result, the Prandtl number Pr becomes

Pr5
n

k
5

tn

tc

T1

T2
,

which can be changed to any value by choosing differ
tn ,tc ,T1, or T2.

III. NUMERICAL SCHEME FOR THE BGK MODELS

For a finite volume scheme, we need to evaluate the
merical fluxes across a cell interface, and the flux funct
depends on the gas distribution function. In this section,
BGK scheme to solve Eqs.~2! and ~3! for fluxes will be
presented.

First, for Eq.~2! we are going to use the operator splittin
method to solve the equation in two steps
d

-

t

u-
n
e

f t1u fx1v f y5
f eq2 f

tn
, ~4!

and

f t5F. ~5!

For Eq.~4!, in the smooth incompressible limit, the gener
solution off in the above equation at the cell interfacexi 11/2,j
and timet can be simplified as@9#

f ~xi 11/2,j ,yi 11/2,j ,t,u,v !5
1

tn
E

2`

t

f eq~x8,y8,t8,u,v !

3e2~ t2t8!/tndt8, ~6!

where x85xi 11/2,j2u(t2t8) and y85yi 11/2,j2v(t2t8) is
the trajectory of a particle motion. Generally, the equilibriu
state f eq around the center of the cell interface (xi 11/2,j
5x0 ,yi 11/2,j5y0) and the initial time step (t50) can be
approximated as

f eq~x,y,t,u,v !5@11~x2x0!a1~y2y0!b1tA#g0 , ~7!

whereg0 is the local Maxwellian located at the center of
cell interface,

g05r0S l1

p De2l1[ ~u2U0!21~v2V0!2] . ~8!

Note againl1 is a constant. The dependence ofa,b,A in Eq.
~7! on the particle velocities can be obtained from the Tay
expansion of a Maxwellian about the center of the cell int
face and have the forms

a5a11a2u1a3v

5S 1

r0

]r

]x
12l1U0

]U

]x
12l1V0

]V

]x D
22l1U0

]U

]x
u22l1V0

]V

]x
v,

b5b11b2u1b3v

5S 1

r0

]r

]y
12l1U0

]U

]y
12l1V0

]V

]y D
22l1U0

]U

]y
u22l1V0

]V

]y
v,

A5A11A2u1A3v

5S 1

r0

]r

]t
12l1U0

]U

]t
12l1V0

]V

]t D
22l1U0

]U

]t
u22l1V0

]V

]t
v,

where all parameters (]r/]x,]U/]x,]V/]x) and
(]r/]y,]U/]y,]V/]y) at t50 can be obtained from the ini
tial reconstructions of the macroscopic variabl
]r/]x,]r/]y,](rU)/]x, . . . . For example, a second-ord
interpolation gives
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r05
1

2
~r i , j1r i 11,j !,

U05
1

2r0
@~rU ! i , j1~rU ! i 11,j #,

V05
1

2r0
@~rV! i , j1~rV! i 11,j #,

]r

]x
5

1

Dx
~r i 11,j2r i , j !,

]r

]y
5

1

2Dy S 1

2
~r i 11,j 111r i , j 11!2

1

2
~r i 11,j 211r i , j 21! D ,

. . .

whereDx,Dy are the cell sizes in thex andy directions. The
difference in the definition of thex derivative from that of
the y derivative is due to the fact that the Taylor expans
point is located at the center of the cell interface in thex
direction.
te

i-
be

in

he
After substituting Eq.~7! into Eq. ~6!, the final gas distri-
bution function at a cell interface is

f ~x0 ,y0 ,t,u,v !5g0@12tn~ua1vb!1~ t2tn!A#. ~9!

The only unknown in the above equation isA, which de-
pends on]r/]t, ]U/]t, and]V/]t. Since

f eq~x0 ,y0 ,t,u,v !5g0~11At!,

together with the compatibility condition

E ~ f eq2 f !S 1

u

v
D dudv50,

along time t and atx5xi 11/2,j , A can be uniquely deter
mined from

E g0~ua1vb1A!S 1

u

v
D dudv50,

which gives
1

r0S ]r

]t

]~rU !

]t

]~rV!

]t

D 52
1

r0
E ~ua1vb!g0S 1

u

v
D dudv

52S a1^u&1a2^u
2&1a3^uv&1b1^v&1b2^uv&1b3^v2&

a1^u
2&1a2^u

3&1a3^u
2v&1b1^vu&1b2^u

2v&1b3^uv2&

a1^uv&1a2^u
2v&1a3^uv2&1b1^v2&1b2^uv2&1b3^v3&

D ,
de

e

where the detailed formulation of^unvm& can be found in the
Appendix. Therefore, the above equation uniquely de
mines]r/]t, ]U/]t, and]V/]t, soA is obtained.

After determiningf in Eq. ~9!, the time-dependent numer
cal fluxes in thex direction across the cell interface can
computed as

S Fr

FrU

FrV

D
i 11/2,j

5E uS 1

u

v
D

3g0@11tn~au1bv !1~ t2tn!A#dudv.

~10!

Once again, the moments ofu andv can be easily obtained
from the recursive relations shown in the Appendix. By
tegrating the above equation for a time stepDt, we get the
total mass, momentum transport. Similarly,Gi , j 11/2, the
fluxes in they direction, can be obtained by repeating t
r-

-

above process in they direction. With both fluxes in thex
and y directions, we can update the flow variables insi
each cell (i , j ) by

S r

rU

rV
D n11

5S r

rU

rV
D n

1E
0

DtS 1

Dx
~Fi 21/2,j2Fi 11/2,j !

1
1

Dy
~Gi , j 21/22Gi , j 11/2! Ddt

2S 0

0

rnbG0~Tn2Tm!
D Dt,

where the effect from Eq.~5! has been accounted for in th
above equation.

Once Eq.~2! is solved, the scheme for Eq.~3! can be
constructed similarly. For example, we can expandheq as
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heq~x,y,t,u,v !5h0@11~x2x0!ah1~y2y0!bh1tAh#,

where

h05~r0T0!S l2

p De2l2[ ~u2U0!21~v2V0!2]

at a cell interface, and

ah5ah11ah2u1ah3v

5S 1

r0T0

]~rT!

]x
12l2U0

]U

]x
12l2V0

]V

]x D
22l2U0

]U

]x
u22l2V0

]V

]x
v,

bh5bh11bh2u1bh3v

5S 1

r0T0

]~rT!

]y
12l2U0

]U

]y
12l2V0

]V

]y D
22l2U0

]U

]y
u22l2V0

]V

]y
v,

Ah5Ah11Ah2u1Ah3v

5S 1

r0T0

]~rT!

]t
12l2U0

]U

]t
12l2V0

]V

]t D
22l2U0

]U

]t
u22l2V0

]V

]t
v,

TABLE I. Critical Rayleigh numbers calculated on differe
meshes. The error is calculated relative to the theoretical value

Grid size Rac Error

20310 1756.22 2.84%
40320 1729.43 1.27%
80340 1711.45 0.22%
Theory 1707.76

FIG. 1. Time history of the maximum vertical velocities.
which are closely related to the coefficients ofa, b, andA.
In other words, the evolution ofh is not totally independen
of the evolution off, and ]U/]x,]V/]x, . . . in the above
equations are the same as the corresponding terms in
equations defininga,b,A earlier. Hence, the only unknown
areT0 , ]T/]x, ]T/]y, and]T/]t. In order to determine all
unknowns, att50, the following interpolations can be use
to getr0T0 and](rT)/]x,](rT)/]y. The linear reconstruc-
tion of thermal energyrT is necessary with

r0T050.5@~rT! i , j1~rT! i 11,j #,

and

]~rT!

]x
5

1

Dx
@~rT! i 11,j2~rT! i , j #,

]~rT!

]y
5

1

2Dy
@~r0T0! i 11/2,j 112~r0T0! i 11/2,j 21#.

The final solution ofh at the center of the cell interface is

h~x0 ,y0 ,t,u,v !5h0@12tc~uah1vbh!1~ t2tc!Ah#,
~11!

and the]T/]t term in Ah is determined by applying the
compatibility condition

FIG. 2. The dependence of Nusselt number on Rayleigh n
ber. The simulation results by Clever and Busse@11# are also in-
cluded.

FIG. 3. Temperature contours at Ra55000.
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E ~heq2h!dudv50,

along (x0 ,y0 ,t), which similarly gives

E Ahh0dudv52E ~ahu1bhv !h0dudv.

Onceh is determined in Eq.~11!, the numerical flux for the
thermal energy is

FrT5E uhdudv,

and the thermal energy inside each cell can be subsequ
updated.

IV. RESULTS

The Rayleigh-Be´nard problem offers a first approach to
complicated convective flow. In this case, with the gravi
tional force in the vertical direction a horizontal layer
viscous fluid is heated from the bottom while the top boun
ary is maintained at a lower temperature. When the temp
ture difference between the top and bottom boundarie
increased above a certain threshold, the static conduc
state becomes unstable to any small disturbance and the
tem become convective.

In our calculations, the horizontal and vertical leng
scales areL52.0 andH51.0, respectively. The tempera
tures at the bottom and top areTbottom51.0,Ttop50.0, with
the differenceDT51.0. Nonslip boundary conditions ar
implemented at the bottom and top boundaries by rever
the flow velocities in the ‘‘ghost’’ cell next to the simulatio

FIG. 4. Stream function contours at Ra55000.

FIG. 5. Temperature contours at Ra510 000.
tly

-

-
a-
is
on
ys-

g

domain. For the lattice Boltzmann method@10#, a more so-
phisticated boundary condition has to be considered in o
to get the nonslip effect. Periodic boundary conditions
used for the temperature along the sides of the box. In
current study, we fixG051.0 andb50.1.

The Rayleigh number is defined as

Ra5
bDTG0H3

nk
.

From the above relation and Pr5n/k, the viscosity coeffi-
cient can be determined:

n5AbDTG0H3 Pr

Ra
.

Consequently, the collision timetn in Eq. ~2! is fixed with

tn52l1n,

andtc in Eq. ~3! is

tc5tn

l2

l1 Pr
.

Since in the simulations the Courant-Friedrichs-Lewy~CFL!
time stepDt is almost a constant, in order to keep the co
sion timetn at around 1021Dt, we have to choosel1 prop-
erly. In most calculations,l1 is on the order of 1021. Al-
though the numerical scheme is general for any Pr, we u
Pr51, l15l2, andtn5tc in the first test case.

As a first test, we tried to get the critical Rayleigh numb
for the onset of thermal convection. With an 80340 mesh,
we have simulated this problem with two supercritical Ra

FIG. 6. Stream function contours at Ra510 000.

FIG. 7. Temperature contours at Ra550 000.
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PRE 60 469RAYLEIGH-BÉNARD SIMULATION USING THE GAS- . . .
leigh numbers Ra51720 and Ra51735 separately. In eac
case, we calculate the maximumy-component velocity in the
whole computational domain at each time step. The tim
dependent amplitude of the y velocity on an 80340 mesh is
shown in Fig. 1, from which we can estimate the critic
Rayleigh number by fitting the curve toV;exp@a(Ra
2Rac)t#, where Rac is the critical Rayleigh number. From
the exponential growth rates, we found that the critical R
leigh number in our calculations is Rac51711.17, which is
0.22% away from the theoretical value 1707.76~which is
actually for a box of width 2.0158). For other meshes,
calculated critical Rayleigh numbers are listed in Table I

Once the Rayleigh-Be´nard convection is stabilized, th
heat transfer between the top and bottom is greatly enhan
The enhancement of the heat transfer can be described b
Nusselt number,

Nu511
^VT&

kDT/H
,

whereV is the vertical velocity,DT is the temperature dif-
ference between the bottom and top walls,H is the height of
the box, and̂ & represents the average over the whole fl
domain. Figure 2 is the calculated relationship between

FIG. 8. Stream function contours at Ra550 000.

FIG. 9. Stream function contours at Ra5100 000.
-

l

-

e

ed.
the

e

Nusselt number and the Rayleigh number. The simulat
results of Clever and Busse@11# are also included. As shown
in the figure, our results are very close to those of Clever
Busse. But, at higher Rayleigh numbers, our value of
Nusselt number is a little bit smaller than that in@11#, and
thus underestimates the amount of heat transfer. Similar
sults are obtained using lattice Boltzmann methods@10,12#.

Typical temperature and stream function contours
shown in Figs. 3–8 with Ra55000, 10 000 and 50 000. A
the Rayleigh number increases, two trends were observe
the temperature distribution: enhanced mixing of the hot a
cold fluids and an increase in the temperature gradients
the bottom and top boundaries. Both trends enhance the
transfer in the box.

As another benchmark problem, we have tried one cas
@13#. This problem is that of the two-dimensional Boussine
flow in a square withH5L51.0 and Prandtl number P
50.71, which is done by settingl15l2 and tc5tn /Pr in
our code. Both velocity components are zero on the bou
aries. The horizontal walls are insulated, and the vert
sides are at temperaturesTleft51.0 andTright50.0. In this
case, the Nusselt number is defined as

Nu511
^UT&

kDT/L
.

The results for the streamline and temperature contour
Ra5105 are shown in Figs. 9 and 10. With Ra5105, the
average Nusselt number in the whole domain is listed
Table II for different mesh sizes. Contrary to the last te
case, our result overestimates the heat transfer. A larger N
selt number is obtained.

V. CONCLUSION

In this paper, gas-kinetic BGK models for convectiv
thermal flow are constructed. A numerical scheme has s
sequently been developed. As an application, the tw
dimensional Rayleigh-Be´nard case is studied. The simulatio

FIG. 10. Temperature contours at Ra5100 000.
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results are very close to those obtained by other meth
The study of incompressible flow phenomena using the c
pressible model is an attractive research area. In orde
simulate the thermal effect in the incompressible fluid,
decoupling of the energy equation from the mass and
mentum equations seems necessary, because the relatio
tween temperature and volume changes is different for
compressible and compressible fluids. Compared with
lattice BGK methods, the current approach with continuo
particle velocity has advantages in terms of stability and
ficiency. The time step used in the current method is the C
time step, which is about one order of magnitude larger t
the particle collision time, which is usually used in the latti
BGK method@14#.

In this paper, the temperature evolution equation only
cludes advection and diffusion terms. The viscous hea
term in the Navier-Stokes energy equation is ignored du
the simplicity of the model. The construction of a tw
temperature BGK model with the viscous heating term in
thermal energy evolution equation is an important and ch
lenging problem. The research in this direction will help
to find an efficient kinetic scheme to simulate incompress
flow, and pave the way to simulate a flow mixing compre
ible gas and incompressible liquid.
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TABLE II. Nusselt numbers calculated on different meshes. T
error is calculated relative to the numerical result in@13#.

Grid size Nusselt number Error

20320 4.590 1.77%
40340 4.563 1.17%
80380 4.540 0.66%
Reference@5# 4.510
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APPENDIX MOMENTS OF THE MAXWELLIAN
DISTRIBUTION FUNCTION

In the gas-kinetic scheme, we need to evaluate mom
of the Maxwellian distribution function with unbounded in
tegration limits. Here, we list some general formulas@15#.

First, we assume that the Maxwellian distribution for
two-dimensional flow is

g5rS l

p De2l[ ~u2U !21~v2V!2] .

Then, by introducing the following notation for the momen
of g:

r^&5E ~••• !gdudv,

the general moment formula becomes

^unvm&5^un&^vm&,

wheren,m are integers. When the integration limits are fro
2` to 1`, we have

^u0&51,

^u&5U,

. . .

^un12&5U^un11&1
n11

2l
^un&.

Similarly,

^v0&51,

^v&5V,

. . .

^vm12&5V^vm11&1
m11

2l
^vm&.
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