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Rayleigh-Benard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme
in the incompressible limit
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In this paper, a gas-kinetic Bhatnagar-Gross-Kr¢BIGK) model is constructed for the Rayleigh+Bed
thermal convection in the incompressible flow limit, where the flow field and temperature field are described by
two coupled BGK models. Since the collision times in the corresponding BGK models can be different, the
Prandtl number can be changed to any value instead of a fixed Pn the original BGK modelP. L.
Bhatnagar, E. P. Gross, and M. Krook, Phys. R&4.511 (1954]. The two-dimensional Rayleigh-Bard
thermal convection is studied and numerical results are compared with theoretical ones as well as other
simulation results[S1063-651X99)00205-4

PACS numbse(s): 47.20.Bp, 05.20.Dd, 02.76¢

I. INTRODUCTION Il. GAS-KINETIC BGK MODELS
FOR RAYLEIGH-BE NARD THERMAL CONVECTION

The use of a code for compressible flow to study incom- In this section, we are going to construct BGK models to
pressible fluid has attracted much attention in the past. Sincgudy the following incompressible Navier-Stokes equations
compressibility is proportional to the Mach number squaredVith thermal effect:

Splp~M?2, it is negligible once the Mach number is lower

than 0.15. In many numerical test cases, such as the cavity {9—?+V‘(PU):0.

flow, the results from compressible codes are almost identi-

cal to the results from incompressible codlés 3]. It is also du Vp )

realized that using a compressible code for incompressible — TU- VU= 7+ vVeU-G, 1)

simulations has advantages. For example, a Poisson solver is
avoided and parallelization of the code can be easily imple-
mented.

If thermal effects are involved in the incompressible flow, , , o i i
a simple adaptation of a compressible code here bears poteff€rép is the density which is a constant in the incompress-
tial danger. For example, across the thermal boundary laye le limit, U the velocity,p the pressurex the coefficient of

the pressure is almost constant. If the temperature chang F%ermal conductivity, and the temperature. Note tha is

b tall by 10%. in the | then th e thermal energy. For the Rayleigh+Bed convection in a
substantially, say by 10%, in the layer, then the energy equgy, ,_gimensional box, the Boussinesq approximation gives
tion will cause a 10% density change due to the ideal equa-

tion of statep=pRT. In reality, the density change is mini- pG=pBGy(T—T.)Y,

mal with any reasonable temperature variation in the liquid. ) o

So, the compressible effect is more severe in the thermd¥hereGo is the gravitational constarit,, the average value
problem than that for the pure Mach compression problen®f the top and bottom temperaturgsthe unit vector in the
where 8p/p~M?2. It is certainly true that we can use other Vertical direction, angb the coefficient of volume expansion.
equations of state to describe a slightly compressible liquigFor authoritative treatments of this problem, see, for ex-
See[4], and references therein. There, the ability to recovePMPle,[5,6]. , o
the correct thermal effects is still questionable. In most cur- N Order to the recover the above equations, gas-kinetic
rent literature about the application of compressible codes tgrodels can be constructed in the following forms:

T
—e T V-(TU=V.(kVT),

incompressible flows, thermal compressibility seems to be of fea_f

ignored. U Vi=——+F, ()
In order to reduce the compressibility in the compressible v

code for the thermal problem, we have to, in some ways, Jh hea—h

decouple the mass and momentum from the energy equation. 5y Fu-Vh= P 3

In this paper, two pseudotemperatures are used to model the
Rayleigh-Baard thermal convection problem in the incom- whereu=(u,v) is the x andy components of the particle
pressible limit. In the current model, the velocity field and velocity. 7, and 7 are the collision times for the BGK mod-
temperature field are described by two Bhatnagar-Grossels. Equation(2) is used to recover the mass and momentum
Krook (BGK) models with different collision times. As a equations, and also the velocity flow field. Equati8his for
consequence, the Prandtl number can be changed to attye thermal energy evolution. The equilibrium stat&and
value by modifying the collision times. h®% have the following forms:
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)\1 2
ed— 5 21| g~ MU=V _
f p(ﬂ_)e , fo+uft+ofy —, (4

and
)\2 _ _ 2
heq:ﬂ(;)te ralumU), f,=F. (5)

For Eq.(4), in the smooth incompressible limit, the general
solution off in the above equation at the cell interfage
and timet can be simplified af9]

where\; and\, can be expressed as

= n = —
M=ZrT, A N=ggT 1
f(Xiy 125 Yiz 1o tLUv)=—1] X",y ,t",u,v
with the two constant variancg andT,. HereT is the real (X2 Yivari ) TyJ —w Ly )
temperature to be simulated. Note tigtand T, are both IOV
constants in the current model, and the value of eiitheor xXe ndt’, (6)

N\, determines the artificial sound speed of the flow field. In h . e dv/ = PR
the above BGK models, the compressibility is determined""€"€ X" =Xi-112 u(t—t’) andy’=yj,ip;—v(t—t") is
from Eq. (2) with the equation of statp=pRT;, which is the traje%ctory of a particle motion. General_ly, the equilibrium
totally decoupled from the real temperatireThe external state 1™ around the center of the cell interface; {4y,

forcing termF in Eq. (2) can be approximated 43] =Xo.Yi+12)=Yo) and the initial time stept(=0) can be
approximated as

= .(u=U)fed
PG =0T 50y, u,0) = [1+ (x~x)a+ (y~Yo)b+tAlgo, (7
from which the buoyancy force can be recovered.
In the course of particle collisions, the compatibility con-
dition is satisfied in the BGK models,

whereg, is the local Maxwellian located at the center of a
cell interface,

) 60— ,,o( E) el o, ®)
f (f®9—f)| U | dudv=0 7
v Note again\ ; is a constant. The dependenceagh,A in Eqg.
and (7) on the particle velocities can be obtained from the Taylor
expansion of a Maxwellian about the center of the cell inter-
J' (h®9—h)dudv =0. face and have the forms

a=a;+auta
By using the Chapman-Enskog expansion, @g.can be e 3

recovered exactly in the incompressible limit, with the kine- 1 dp U Vv
matic viscosity coefficient =\ 5y ox +2MUo o+ 20 Voo
v=7,RT, oU oV

- Zkon_U_Z)\lVO_U,
and the heat conduction coefficient IX X

k:TCRTz. b:b1+b2U+b30

Different from the original BGK mod€f8], here both coef-
ficients are decoupled from the fluid temperateAs a
result, the Prandtl number Pr becomes

—(1 PN APIRY W)
pody Tt Pay 0y

Ju oV

P_V_Tv Tl _2)\1UOWU_2)\1VOWU,

r= k N Tc TZ,

A:A1+A2U+A3U

which can be changed to any value by choosing different
Tvachlv OrTZ' — iﬁ_P+2)\ U] E‘l‘Z)\ V, ﬂ
po ot ST 170 5t

Ill. NUMERICAL SCHEME FOR THE BGK MODELS NV

U

For a finite volume scheme, we need to evaluate the nu- _2)‘1U0ﬁu_2)‘1\/°ﬁv'
merical fluxes across a cell interface, and the flux function
depends on the gas distribution function. In this section, thevhere all  parameters dp/dx,dU/dx,dV/ox)  and
BGK scheme to solve Eqg2) and (3) for fluxes will be  (dp/dy,dUldy,dV/dy) att=0 can be obtained from the ini-
presented. tial reconstructions of the macroscopic variables

First, for Eq.(2) we are going to use the operator splitting dp/dx,dpldy,d(pU)Idx, ... . For example, a second-order
method to solve the equation in two steps interpolation gives
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1 After substituting Eq(7) into Eq. (6), the final gas distri-
Po=7(pi +pit1j) bution function at a cell interface is
f(X0,Y0,t,u,v) =go[1— 7, (Uat+vb)+(t—7,)A]. (9)
UOZZ_W[(PU)HJF(PU)HL]]' The only unknown in the above equation As which de-
pends orvp/dt, dU/dt, andgV/éat. Since
1
V0=2—po[(pV)i’j+(pV)i+1JL f*4X0,Y0,t,u,0) =go(1+Ab),
together with the compatibility condition
dp 1
X~ Ax Pi+1i TP, 1
f (f¢—f)[ u|dudv=0,
ap 1 /1 v

1
Jy ~ 2Ay z(Pi+1,j+1+Pi,j+l)_E(Pi+l,jfl+Pi,j71) ,
along timet and atx=X;,;, A can be uniquely deter-
mined from

whereAx,Ay are the cell sizes in theandy directions. The 1
difference in the definition of the derivative from that of f go(ua+uvb+A)| U |dudy=0,
they derivative is due to the fact that the Taylor expansion

point is located at the center of the cell interface in the

direction. which gives

v

ap
ot

1
1] d(pU) 1
— z—p—f(uaJrvb)go u|dudv
0

v

d(pV)
at

ay(u) +ap(u®) +ag(uv) +by(v) +by(uv) +bg(v?)
=—| a;(u?)+ay(u®)+agz(u?v)+b(vu)+by(u?v)+bs(uv?)
a,(uv)+ay(u?v)+az(uv?) +b(v?) +by(uv?) + bs(v®)

where the detailed formulation ¢&é"v™) can be found in the above process in thg direction. With both fluxes in the
Appendix. Therefore, the above equation uniquely deterandy directions, we can update the flow variables inside

minesdp/dt, dU/dt, anddV/dt, soA is obtained. each cell {,j) by
After determiningf in Eq. (9), the time-dependent numeri-
cal fluxes in thex direction across the cell interface can be p \ M1 p\ "
computed as Atf 1
pU =l pU | + Jo (R(}_illz,j_]:HlIZ,j)
F, 1 pV pV
i’ +A_(gi,j1/2_gi,j+1/2)>dt
Fov! i s 1n v y
X go[ 1+ 7,(au+bv)+(t—7,)Aldudy. 0
(10) - 0 At,

P"BGH(T"=Tp)
Once again, the moments ofandv can be easily obtained
from the recursive relations shown in the Appendix. By in-where the effect from Eq5) has been accounted for in the
tegrating the above equation for a time stefy we get the above equation.
total mass, momentum transport. Similarlg, ;. ,,, the Once Eq.(2) is solved, the scheme for E¢3) can be
fluxes in they direction, can be obtained by repeating theconstructed similarly. For example, we can expafitias
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FIG. 1. Time history of the maximum vertical velocities.

h®q(x,y,t,u,v)=hg[ 1+ (X—Xg)an+ (Y —Yo)bn+tAu],

where

A
ho= (poTo)(;z) e Mal(u=Ug)?+(©-Vg)?

at a cell interface, and

an= ahl+ ah2U+ apsv

1 a(pT)
POTO X

Ju oV
+ 27\2U05 + 27\2V05

J oV
_2)\2U05U_2)\2V05v,

bh: bhl+ bh2U+ bh3l)

1 a(pT) JU aV

_(PoTo Iy
ou oV
_ZAZUOWU_Z)\ZVOWU’

Ah: Ahl+ Ah2U + Ah3U
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FIG. 2. The dependence of Nusselt number on Rayleigh num-
ber. The simulation results by Clever and Bug$g| are also in-
cluded.

which are closely related to the coefficientsagfb, andA.

In other words, the evolution df is not totally independent

of the evolution off, and 9U/dx,dV/dx, ... in the above
equations are the same as the corresponding terms in the
equations defining,b,A earlier. Hence, the only unknowns
areTy, dT/ax, dT/dy, anddT/at. In order to determine all
unknowns, at=0, the following interpolations can be used

to getpoTo andd(pT)/ox,d(pT)/dy. The linear reconstruc-
tion of thermal energyT is necessary with

poTo=0.9(pT)ij+(pT)is1l,

and

é’(pT)_ 1
ax  AX

[(pTit1j—(pTi ],

J(pT) 1
oy m[(PoTo)i +12j+1~ (PoT )i+ 12 1]

The final solution oth at the center of the cell interface is

h(Xg,Yo,t,u,v)=ho[1— 7(ua,+vby)+ (t— 1) Anl,

and thedT/dt term in A, is determined by applying the
compatibility condition

1 T T T T T T T T T

09

08
07

TABLE |. Critical Rayleigh numbers calculated on different 44t
meshes. The error is calculated relative to the theoretical value.

>05F

04r

Grid size Ra Error 03
20% 10 1756.22 2.84% 021
40% 20 1729.43 1.27% o
80x 40 1711.45 0.22% ’
Theory 1707.76

FIG. 3. Temperature contours at -R&000.
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FIG. 4. Stream function contours at R&000. FIG. 6. Stream function contours at Ra0 000.
. domain. For the lattice Boltzmann methftD], a more so-
f (h®*—h)dudv =0, phisticated boundary condition has to be considered in order
to get the nonslip effect. Periodic boundary conditions are
along (q,Yo,t), which similarly gives used for the temperature along the sides of the box. In our

current study, we fixGy=1.0 andg=0.1.
f Aqhodudy = _j (agu+byo)hod Uy The Rayleigh number is defined as
BATGH?®
Onceh is determined in Eq(11), the numerical flux for the =Kk
thermal energy is
From the above relation and Pw/k, the viscosity coeffi-
prIJ uhdud, cient can be determined:

BATGH® Pr
and the thermal energy inside each cell can be subsequently Y“N"T Ra

updated.

Consequently, the collision time, in Eq. (2) is fixed with
IV. RESULTS
T,=2\1V,

The Rayleigh-Beard problem offers a first approach to a
complicated convective flow. In this case, with the gravita-and 7. in Eq. (3) is
tional force in the vertical direction a horizontal layer of
viscous fluid is heated from the bottom while the top bound- R
ary is maintained at a lower temperature. When the tempera- Te™ Tvrpr'
ture difference between the top and bottom boundaries is
increased above a certain threshold, the static conductioBince in the simulations the Courant-Friedrichs-Le(@L)
state becomes unstable to any small disturbance and the sysne stepAt is almost a constant, in order to keep the colli-
tem become convective. sion timer, at around 10'At, we have to choosk; prop-

In our calculations, the horizontal and vertical lengtherly. In most calculations) ; is on the order of 10'. Al-
scales ard=2.0 andH=1.0, respectively. The tempera- though the numerical scheme is general for any Pr, we used
tures at the bottom and top aifgyuom= 1.0, Tip=0.0, with P, =1, \;=X\,, and7,= 7. in the first test case.
the differenceAT=1.0. Nonslip boundary conditions are  As a first test, we tried to get the critical Rayleigh number
implemented at the bottom and top boundaries by reversinfpr the onset of thermal convection. With an>880 mesh,
the flow velocities in the “ghost” cell next to the simulation we have simulated this problem with two supercritical Ray-

1

1

09 09F

08 08
07 07
06 06
»>05 >05F
04f 04}
0.3 03

02 02

0.1 0.1

FIG. 5. Temperature contours at R&0 000. FIG. 7. Temperature contours at -R&0 000.
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FIG. 8. Stream function contours at R&0 000.

leigh numbers Ra& 1720 and Ra 1735 separately. In each
case, we calculate the maximuyatomponent velocity in the
whole computational domain at each time step. The time-
dependent amplitude of the y velocity on anx8@0 mesh is
shown in Fig. 1, from which we can estimate the critical
Rayleigh number by fitting the curve t&~exda«(Ra
—Ra)t], where Ra is the critical Rayleigh number. From
the exponential growth rates, we found that the critical Ray-
leigh number in our calculations is Ral1711.17, which is
0.22% away from the theoretical value 1707.(®ghich is
actually for a box of width 2.0158). For other meshes, th
calculated critical Rayleigh numbers are listed in Table I.

Once the Rayleigh-Berd convection is stabilized, the
heat transfer between the top and bottom is greatly enhanc
The enhancement of the heat transfer can be described by t
Nusselt number,

FIG. 10. Temperature contours at-R400 000.

Nusselt number and the Rayleigh number. The simulation
results of Clever and Bus$#&1] are also included. As shown
€in the figure, our results are very close to those of Clever and
Busse. But, at higher Rayleigh numbers, our value of the
usselt number is a little bit smaller than that[ihl], and
us underestimates the amount of heat transfer. Similar re-
filts are obtained using lattice Boltzmann methiddi 12.
Typical temperature and stream function contours are
shown in Figs. 3-8 with Ra5000, 10000 and 50 000. As
Nu=1+ (V1) the Rayleigh number increases, two trends were observed for
KAT/H’ the temperature distribution: enhanced mixing of the hot and
cold fluids and an increase in the temperature gradients near
whereV is the vertical velocity AT is the temperature dif- the bottom and top boundaries. Both trends enhance the heat
ference between the bottom and top walllsis the height of  transfer in the box.
the box, and ) represents the average over the whole flow As another benchmark problem, we have tried one case in
domain. Figure 2 is the calculated relationship between thgl3]. This problem is that of the two-dimensional Boussinesq
flow in a square withH=L=1.0 and Prandtl number Pr
1 - - - - - - - - - =0.71, which is done by setting; =\, and 7.=7,/Pr in
our code. Both velocity components are zero on the bound-

09r i aries. The horizontal walls are insulated, and the vertical
sides are at temperatur@g;=1.0 and Ty, =0.0. In this

08F b . .
case, the Nusselt number is defined as

7l - Nu=1+ (uT)

06| ] AT ATIL

> 05} . The results for the streamline and temperature contours at

Ra=10 are shown in Figs. 9 and 10. With R40°, the

04r 1 average Nusselt number in the whole domain is listed in
Table Il for different mesh sizes. Contrary to the last test

o3r ] case, our result overestimates the heat transfer. A larger Nus-

ool | selt number is obtained.

o1k ] V. CONCLUSION

) , , ) ) , , , , In this paper, gas-kinetic BGK models for convective
0 o1 02 03 04 05 06 07 08 09 1 thermal flow are constructed. A numerical scheme has sub-
sequently been developed. As an application, the two-

FIG. 9. Stream function contours at R400 000. dimensional Rayleigh-Bward case is studied. The simulation
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TABLE Il. Nusselt numbers calculated on different meshes. The APPENDIX MOMENTS OF THE MAXWELLIAN
error is calculated relative to the numerical resulfig]. DISTRIBUTION FUNCTION

In the gas-kinetic scheme, we need to evaluate moments

Grid size Nusselt number Error
of the Maxwellian distribution function with unbounded in-
20x20 4.590 1.77% tegration limits. Here, we list some general formulas].
40X 40 4.563 1.17% First, we assume that the Maxwellian distribution for a
80x 80 4,540 0.66% two-dimensional flow is
Referencd5] 4510
_ (A “M@u-U)%+@®-V)?
o-of e |

results are very close to those obtained by other methods.

The study of incompressible flow phenomena using the comthen, by introducing the following notation for the moments
pressible model is an attractive research area. In order tgf g

simulate the thermal effect in the incompressible fluid, the

decoupling of the energy equation from the mass and mo-

mentum equations seems necessary, because the relation be- P<>:f (---)gdud,

tween temperature and volume changes is different for in-

compressible and compressible fluids. Compared with théhe general moment formula becomes

lattice BGK methods, the current approach with continuous

particle velocity has advantages in terms of stability and ef- W™= @,

ficiency. The time step used in the current method is the CFL

time step, which is about one order of magnitude larger thamvheren,m are integers. When the integration limits are from
the particle collision time, which is usually used in the lattice — to +, we have

BGK method[14].

In this paper, the temperature evolution equation only in- (u%=1,
cludes advection and diffusion terms. The viscous heating
term in the Navier-Stokes energy equation is ignored due to (uy=U,

the simplicity of the model. The construction of a two-
temperature BGK model with the viscous heating term in the
thermal energy evolution equation is an important and chal-

lenging problem. The research in this direction will help us n+1
to find an efficient kinetic scheme to simulate incompressible (U 2y =U(u"t )+ T(u”).
flow, and pave the way to simulate a flow mixing compress-
ible gas and incompressible liquid. Similarly,
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